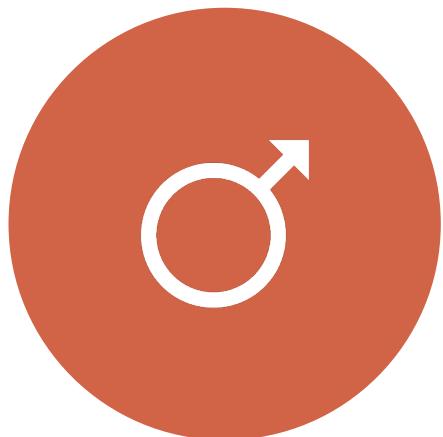


Measuring racial inequalities in health care outcomes: Prostate cancer in the US


HOLLY HARTMAN, MS

BIOSTATISTICS DEI RESEARCH SEMINAR

11/6/2019

Prostate cancer

2ND MOST COMMON
CANCER IN US MEN

5 YEAR SURVIVAL RATE
IS 98%

RACIAL DISPARITIES IN
INCIDENCE AND
MORTALITY

Prostate cancer survival

Good prognosis, especially in early stages

Long term survival means long term follow up

Many competing risks like death from other causes

Prostate cancer racial disparities

Black men more likely to

- Be diagnosed with prostate cancer
- Present with distant metastases
- Die of their disease

than non-Hispanic white men.

RESEARCH QUESTION:

Is the disparity in prostate cancer specific mortality due to a biological mechanism or socioeconomic status?

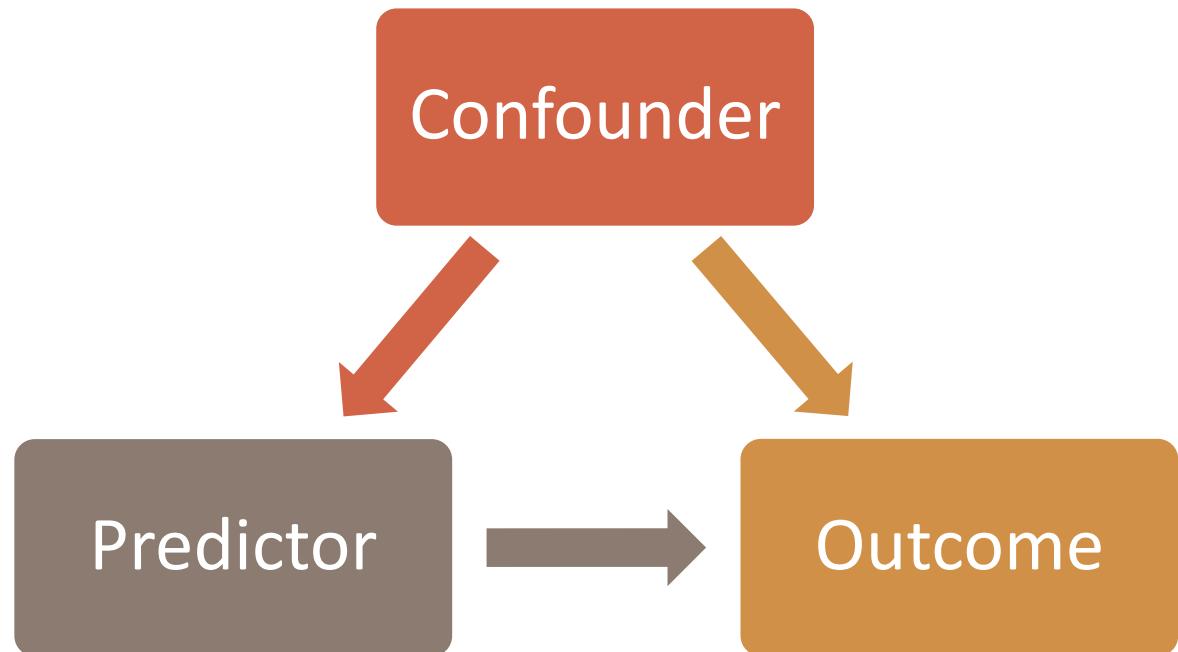
Measured and
unmeasured
confounders

Competing risks

Main concerns

Measured and
unmeasured
confounders

Competing risks


Main concerns

Observational data

Only data available to
study racial differences

Problems come from
confounders

Propensity scores

Statistical method to adjust for confounding in “treatment” assignment

Propensity score is the probability of receiving the treatment received conditional on covariates

Can obtain unbiased estimate of the treatment effect when conditioning on the propensity score

Developed by Rosenbaum and Rubin 1983

SEER

Surveillance,
Epidemiology, and
End Results

National cancer
registry database

Black men =
52,840
White men =
243,433

SEER variables

Cancer related

Treatments

T-stage

N-stage

Prostate specific
antigen (added in 2017)

Insurance status

Uninsured

Insured

Medicaid

No comorbidities

Yost variable (added in 2017)

Measure of
socioeconomic status

Yost socioeconomic status

Validated continuous measure of socioeconomic status

Estimated based on county level variables

- Median household income
- Median home values
- Percent below 150% poverty level
- And others

SEER demographics

Black men were younger, had worse cancer, lower SES, less likely to receive surgery.

After propensity weighting, no meaningful difference in any variable.

SEER results

Age

- 1.54 (1.49, 1.59)

Age and severity

- 1.47 (1.43, 1.51)

Age, severity, and SES

- 1.30 (1.27, 1.34)

SEER Conclusion

Adjusting for SES, cancer severity, and treatment black men are more likely to die of their prostate cancer. This could be due to a biological mechanism.

Research on biology and prostate cancer

RESEARCH ARTICLE

Correlating blood-based DNA methylation markers and prostate cancer risk in African-American men

Emmanuel Moses-Fynn¹, Wei Tano², Desta Bevene³, Victor Anrev³, Robert Coneland⁴

REVIEW

Mitochondrial biology and prostate cancer ethnic disparity

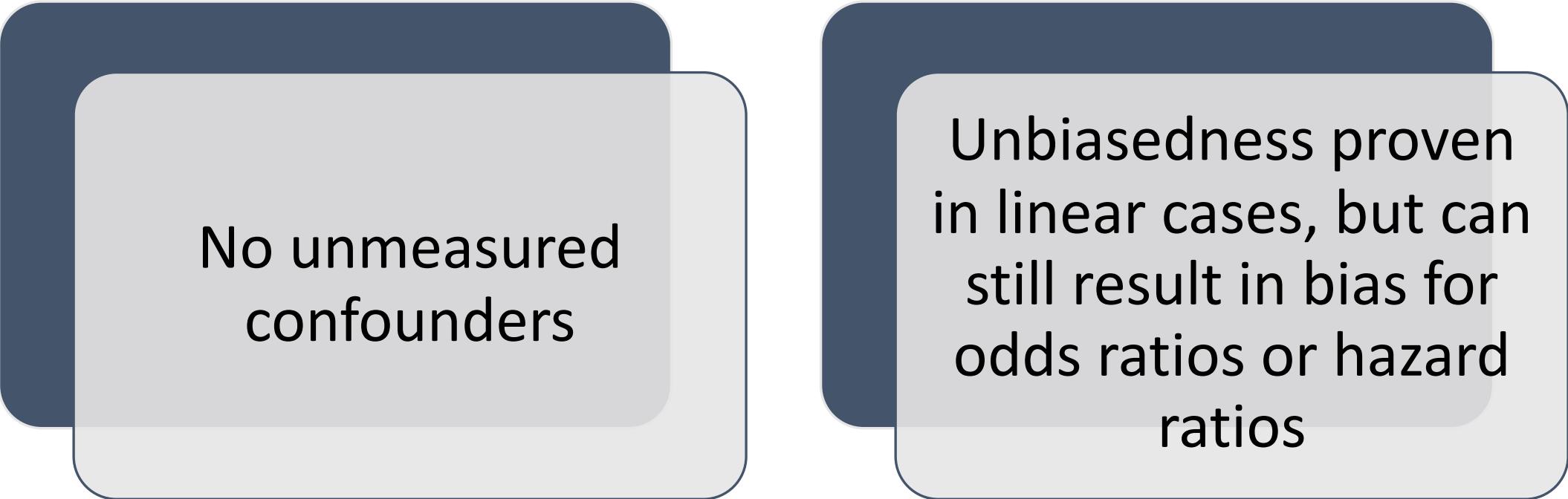
Nolin Vaca, Dinghao Cohen^{*a}, Mariana Carla Stern¹, Balakomali Odadina²

Elevation of Stromal-Derived Mediators of Inflammation Promote Prostate Cancer Progression in African-American Men

Manu Chitale, Debra L. Tietzel, Mark S. Currin, Paul L. Miller, Michael J. Gheusi

SCIENTIFIC REPORTS

OPEN


Dysregulated gene expression predicts tumor aggressiveness in African-American prostate cancer patients

Received: 8 April 2018
Accepted: 22 October 2018

If you were reading this paper, what questions would you have for the authors?

Assumptions of propensity scores

No unmeasured confounders

Unbiasedness proven in linear cases, but can still result in bias for odds ratios or hazard ratios

Confounders

Measured confounders

- Stage of disease
- Age
- Treatment

Unmeasured confounders

- Distrust of medical professionals
- Access to care
- Institutional racism

Institutional racism

Definition: Differential access to the goods, services, and opportunities of society

Example: Public school budgets are dictated by taxes. Wealthy areas with higher school budgets tend to be white. The quality of the education able to be provided is likely higher due to the larger budget.

Institutional racism is seen in:

Housing

Home Owner's Loan Corporation denying loans for areas with high risk of defaulting

Health

EHR data is commonly from wealthy and white hospitals and algorithms from this data prioritize white diseases

Crime/law

Police monitor minority neighborhoods more and have more contact with people in those areas leading to more arrests

Education

Students who have to work to pay for school may do worse and be less likely to attend grad school

To look at the racial disparity in prostate cancer mortality, we examined 2 additional data sources with lower chances for unmeasured confounders

SEER

National cancer registry database

Commonly used observational data

VA

Equal access to care

RCT

4 RTOG trials

Homogeneous population

VA data

5 equal access medical centers

All patients were treated with surgery

Black Men: 1513
White Men: 2495

Black men were younger and had more severe prostate cancer, but these differences were not present after propensity weighting.

VA results

Age adjusted: 0.88 (0.57, 1.34)

Age and severity adjusted: 0.85 (0.56, 1.30)

RCT data

4 Radiation Therapy
Oncology Group
RCTs

Specific
inclusion/exclusion
criteria

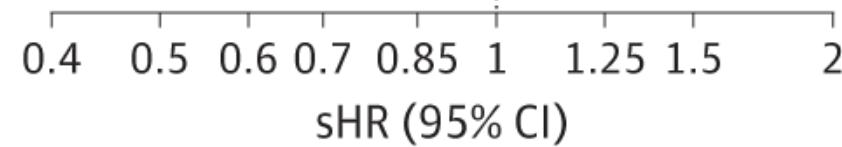
Black Men: 1129
White Men: 4725

Black men were
younger and had
more severe cancer,
but after propensity
methods difference
were not significant.

RCT results

Age adjusted: 0.90 (0.74, 1.09)

Age and severity adjusted: 0.81 (0.66, 0.99)


RCT results

Age adjusted: 0.90 (0.74, 1.09)

Age and severity adjusted: 0.81 (0.66, 0.99)

Cohort (No. Black/White)	sHR (95% CI)	Black Men at Lower Risk	Black Men at Higher Risk	P Value
SEER (52840/243433)				
Age weighted	1.30 (1.23-1.37)			<.001
Age and stage weighted	1.17 (1.11-1.24)			<.001
Fully weighted	1.09 (1.04-1.15)			<.001
VA (1513/2459)				
Age weighted	0.88 (0.57-1.34)			.55
Fully weighted	0.85 (0.56-1.30)			.46
RCT (1129/4725)				
Age weighted	0.90 (0.74-1.09)			.27
Fully weighted	0.81 (0.66-0.99)			.04

Conclusions

The difference seen at the population level in prostate cancer specific mortality between black and white men is likely not due to biological differences.

If black men and white men receive equal care and have equal access, then they will have similar survival.

What we don't know from this work

01

Why do black
men have higher
incidence rates of
prostate cancer?

02

Why do black
men present with
more advanced
prostate cancer?

03

Why are black
men more likely
to die of other
causes?

04

HOW do we fix
these disparities?

Effects of misusing statistical methods

Funds being used for incorrect solution (focusing on biology vs institutional racism)

Differential treatment based on race because of belief of more aggressive cancer

Similar databases used to compare efficacy of treatments and we have also shown that these results do not match with RCTs leading to improper treatment guidelines

Other areas with racial disparities

Diabetes

Cardiovascular
disease

Asthma

Chronic
kidney disease

Hypertension

Infectious
Diseases

Other statistical methods

Instrumental
variable
analysis

Using different
data with fewer
unmeasured
confounders
(RCTs, VA)

What can statisticians do?

Discuss

Discuss the diversity within a study

Acknowledge

Acknowledge institutional racism in our research and our own systems

Clarify

Clarify the limitations of the methods and data used

Explore

Explore possible alternative explanations for results

Take away messages

Observational data has
unmeasured
confounders and we
must use methods that
account for this

Using improper
methods will use up
resources and time

References

<https://www.training.seer.cancer.gov/prostate/intro/>

<https://seer.cancer.gov/statfacts/html/prost.html>

<https://seer.cancer.gov/statfacts/html/disparities.html>

DeSantis CE, Siegel RL, Sauer AG, et al. Cancer statistics for African Americans, 2016: progress and opportunities in reducing racial disparities. CA Cancer J Clin. 2016;66(4):290-308. doi:10.3322/caac.21340

Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. *Biometrika* 1983;70:41–55.

Austin, P. C., Grootendorst, P. , Normand, S. T. and Anderson, G. M. (2007), Conditioning on the propensity score can result in biased estimation of common measures of treatment effect: a Monte Carlo study. *Statist. Med.*, 26: 754-768. doi:[10.1002/sim.2618](https://doi.org/10.1002/sim.2618)

Dess RT, Hartman HE, Mahal BA, et al. Association of Black Race With Prostate Cancer–Specific and Other-Cause Mortality. *JAMA Oncol.* Published online May 23, 2019;5(7):975–983. doi:10.1001/jamaoncol.2019.0826

<https://science.sciencemag.org/content/366/6464/447.full>

Soni PD, Hartman HE, Dess RT, et al. Comparison of population-based observational studies with randomized trials in oncology. *J Clin Oncol.* Published online March 21, 2019. doi:10.1200/JCO.18.01074 25.