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N
snSMART Goals

@ snSMARTS designs can be used to more efficiently identify the best
treatment overall and use Bayesian methods [1, 2].

@ Both require dichotomous determination of “response” to determine
the second stage treatment (sometimes called a tailoring variable) |3,
4].
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snSMART Design
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Problems with binary outcomes

@ In rare diseases or other areas with little prior knowledge, a clear
choice for a dichotomization method or a binary surrogate may not be
available prior to the start of the study.

@ Pilot studies can be expensive and cost prohibitive.

o If a dichotomized continuous variable is used as outcome, can result
in loss of statistical power [5].
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Continuous snSMART Design
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snSMART design with continuous repeated
measures

Goal: identify the best treatment at the end of the first stage.

Use a mapping function to map first stage outcome Yj; to [0, 1] and
is the probability of staying on the same treatment.

Better outcomes of Yj; should map to values closer to 1

Options for the Mapping Function:
o Linear function between minimum and maximum values of Y;

° f(Yl) = (Yl - Ymin)/(ymax - Ymin)

o Can also modify with powers, f(Y1)¥, if distribution is expected to be
skewed or it would be beneficial to have more/fewer people stay on the
treatment

e Function between practical/ethical values of Y; and 0 or 1 beyond
these limits
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Models

Goal (mathematically): Estimate all 3; parameters (treatment effects at
the end of the first stage).

Mean Model:

T

pa(Tin) =D Bil (T =)

j=1

T T

po(Tin, Te) = a1 Y Bil(Ta =J)+ a2 Y Bil(Tia = k) + a3l (Tin = Tio)
j=1 k=1

Covariance Model:

V(Ti1, Tiz) = Vil(Tin = Ti2) + Vol (Tix # Tio)

where V7 and V, are both 2 x 2 variance-covariance matrices.
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N
Priors

Bj ~ N(mean = 50, standard deviation (sd) = 50) for all j
a1 ~ Unif (0,0.5)
a3 ~ FN(mean = 0,sd = 20)

(R
e

These priors impose 3 conditions for the o parameters:
1) Qp = 1-— a1

2) ag > g

3) a3 Z 0
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Ideal scenarios

@7 =08 m=0.3 and 0 =20

Scenario | 1 2 3
1 40 50 60
2 20 30 40
3 60 70 80
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Scenarios with model assumption violations

@ We examined 3 assumption violations
o Second stage treatment effect, puo, is based on the treatment specific
pathway (TSP) rather than weighted means
o Variance, o2, varies depending on treatment
o Correlation, 7, depends on the TSP (treatments may have more or less
correlation based on treatment mechanism similarities)

@ All other parameters were the same as scenario 1.

Holly Hartman Continuous snSMARTSs March 25, 2020 10/17



Scenarios

15} Violation

Scenario | 1 2 3 | Mean Variance Correlation

1 40 50 60

2 20 30 40

3 60 70 80

4 40 50 60 X

5 40 50 60 X

6 40 50 60 X

7 40 50 60 X X

8 40 50 60 X X

9 40 50 60 X X

10 40 50 60 X X X
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-
Mapping functions

@ Used 3 mapping functions
o MF1=Y;/100
o MF2 = (Y;/100)>
o MF1/2 = (Y;/100)'/2
@ For scenarios 1, 2, and 3 compared to dichotomized outcomes (DO)
using dichotomization of the continuous first stage outcome with 3
different cut offs:

e DO 30 =30
e DO 50 =50
e DO 70 =70
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Results for ideal scenarios

Scenario 1 | | Scenario 2 | | Scenario 3

Average Bias
°

MF 1 MF 2 MF 1/2DO 30 DO 50 DO 70 MF 1 MF 2 MF 1/2DO 30 DO 50 DO 70 MF 1 MF 2 MF 1/2DO 30 DO 50 DO 70
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Results for model assumption violations
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Patient outcomes

Scenario 1 1 Scenario 2 11 Scenario 3
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Second Stage Outcome

MF1 MF2 MF12 DO30 DO50 DO 70 MF1 MF2 MFL2 DO30 DOS0 DO 70 MF1 MF2 MFL2 DO30 DOS0 DO 70
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Conclusions

@ Mapping functions are a reasonable method for conducting a
snSMART design in the absence of a binary variable.

@ Patient outcomes are similar to when using a dichotomous outcome.

@ Using a mapping function improves the number of treatment
pathways seen in a trial relative to a poorly selected dichotomous
outcome.
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