

Small Sample Sequential Multiple Assignment Randomized Trials with Continuous Repeated Measures

ENAR 2020

Holly Hartman

Roy Tamura, Matthew Schipper, Kelley Kidwell

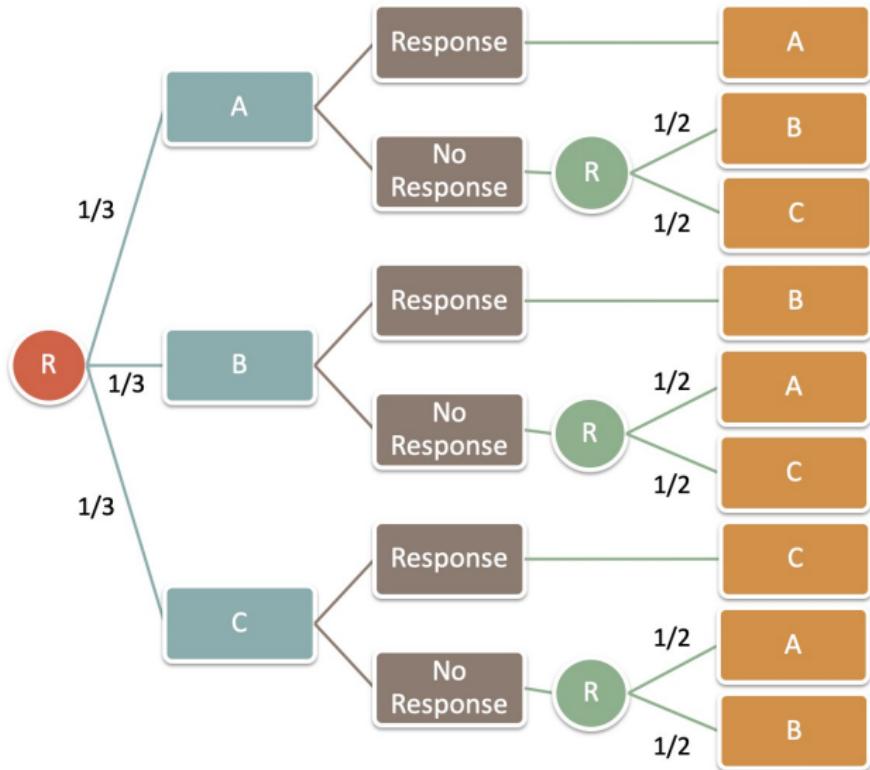
holhart@umich.edu
<https://holly-hartman.com>
@holly7holly

March 25, 2020

snSMART Goals

- snSMARTs designs can be used to more efficiently identify the best treatment overall and use Bayesian methods [1, 2].
- Both require dichotomous determination of “response” to determine the second stage treatment (sometimes called a tailoring variable) [3, 4].

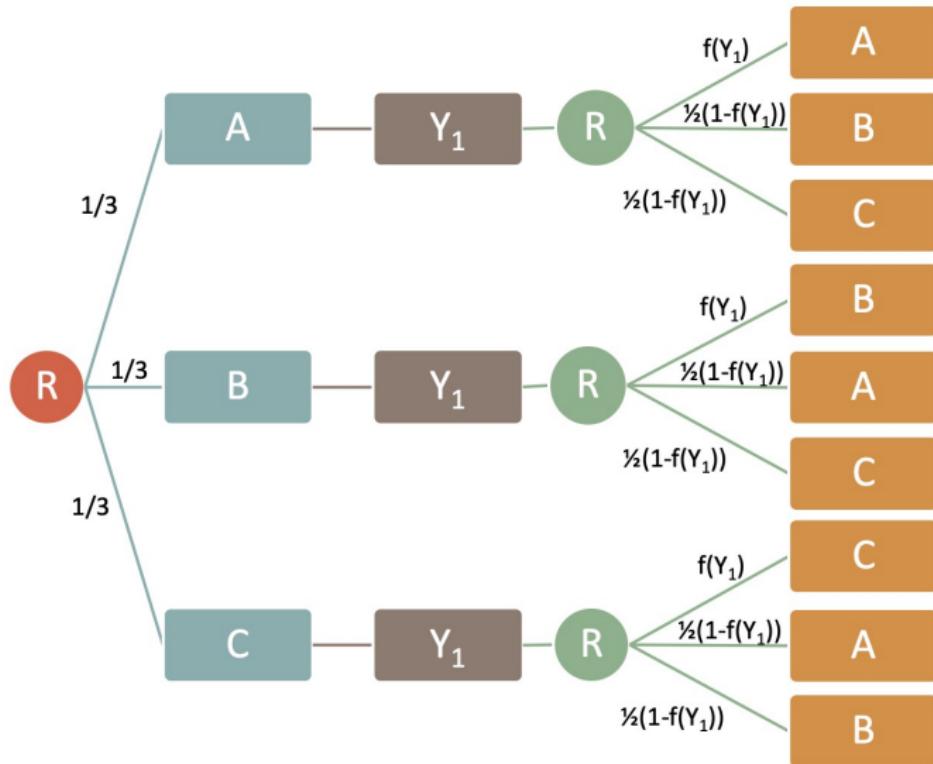
snSMART Design



Problems with binary outcomes

- In rare diseases or other areas with little prior knowledge, a clear choice for a dichotomization method or a binary surrogate may not be available prior to the start of the study.
- Pilot studies can be expensive and cost prohibitive.
- If a dichotomized continuous variable is used as outcome, can result in loss of statistical power [5].

Continuous snSMART Design



snSMART design with continuous repeated measures

- Goal: identify the best treatment at the end of the first stage.
- Use a mapping function to map first stage outcome Y_{i1} to $[0, 1]$ and is the probability of staying on the same treatment.
- Better outcomes of Y_{i1} should map to values closer to 1
- Options for the Mapping Function:
 - Linear function between minimum and maximum values of Y_1
 - $f(Y_1) = (Y_1 - Y_{min}) / (Y_{max} - Y_{min})$
 - Can also modify with powers, $f(Y_1)^k$, if distribution is expected to be skewed or it would be beneficial to have more/fewer people stay on the treatment
 - Function between practical/ethical values of Y_1 and 0 or 1 beyond these limits

Models

Goal (mathematically): Estimate all β_j parameters (treatment effects at the end of the first stage).

Mean Model:

$$\mu_1(T_{i1}) = \sum_{j=1}^T \beta_j I(T_{i1} = j)$$

$$\mu_2(T_{i1}, T_{i2}) = \alpha_1 \sum_{j=1}^T \beta_j I(T_{i1} = j) + \alpha_2 \sum_{k=1}^T \beta_k I(T_{i2} = k) + \alpha_3 I(T_{i1} = T_{i2})$$

Covariance Model:

$$\mathbf{V}(T_{i1}, T_{i2}) = V_1 I(T_{i1} = T_{i2}) + V_2 I(T_{i1} \neq T_{i2})$$

where V_1 and V_2 are both 2×2 variance-covariance matrices.

Priors

$\beta_j \sim N(\text{mean} = 50, \text{standard deviation (sd)} = 50)$ for all j

$\alpha_1 \sim Unif(0, 0.5)$

$\alpha_3 \sim FN(\text{mean} = 0, \text{sd} = 20)$

$V_1 \sim W_2 \left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, 2 \right)$

$V_2 \sim W_2 \left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, 2 \right)$

These priors impose 3 conditions for the α parameters:

- 1) $\alpha_2 = 1 - \alpha_1$
- 2) $\alpha_2 > \alpha_1$
- 3) $\alpha_3 \geq 0$

Ideal scenarios

- $\alpha = (0.2, 0.8, 5)$

$$V_1 = \sigma^2 \begin{bmatrix} 1 & \tau_1 \\ \tau_1 & 1 \end{bmatrix}, V_2 = \sigma^2 \begin{bmatrix} 1 & \tau_2 \\ \tau_2 & 1 \end{bmatrix}$$

- $\tau_1 = 0.8$, $\tau_2 = 0.3$, and $\sigma = 20$

Scenario	β		
	1	2	3
1	40	50	60
2	20	30	40
3	60	70	80

Scenarios with model assumption violations

- We examined 3 assumption violations
 - Second stage treatment effect, μ_2 , is based on the treatment specific pathway (TSP) rather than weighted means
 - Variance, σ^2 , varies depending on treatment
 - Correlation, τ , depends on the TSP (treatments may have more or less correlation based on treatment mechanism similarities)
- All other parameters were the same as scenario 1.

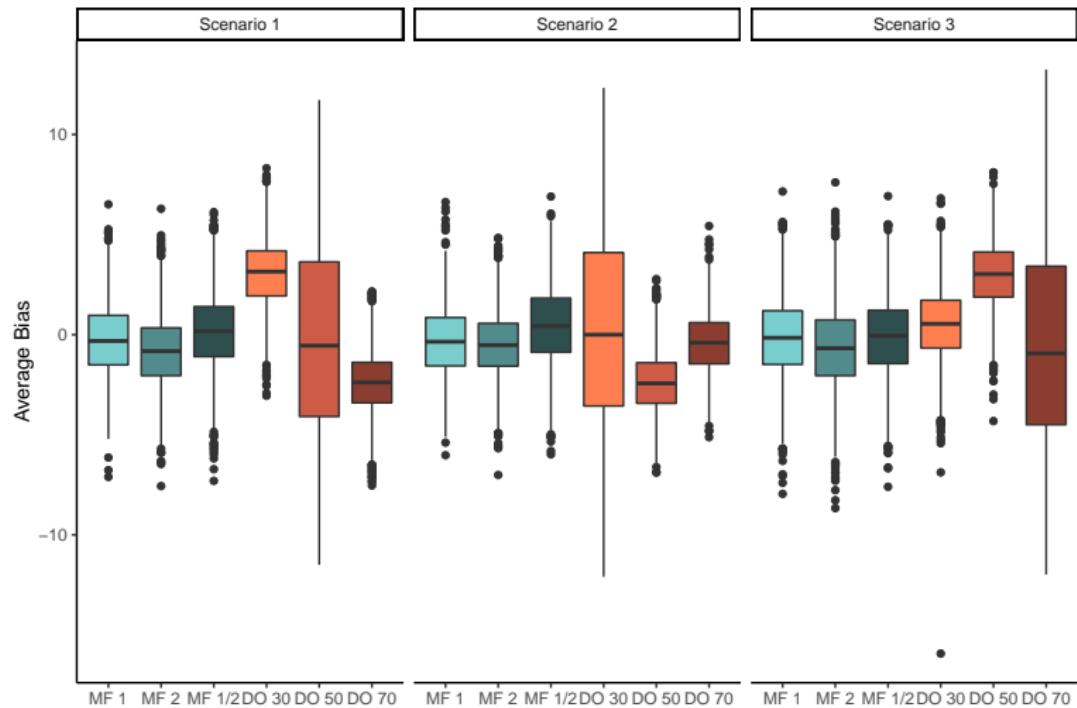
Scenarios

Scenario	β			Violation		
	1	2	3	Mean	Variance	Correlation
1	40	50	60			
2	20	30	40			
3	60	70	80			
4	40	50	60	×		
5	40	50	60		×	
6	40	50	60			×
7	40	50	60	×	×	
8	40	50	60	×		×
9	40	50	60		×	×
10	40	50	60	×	×	×

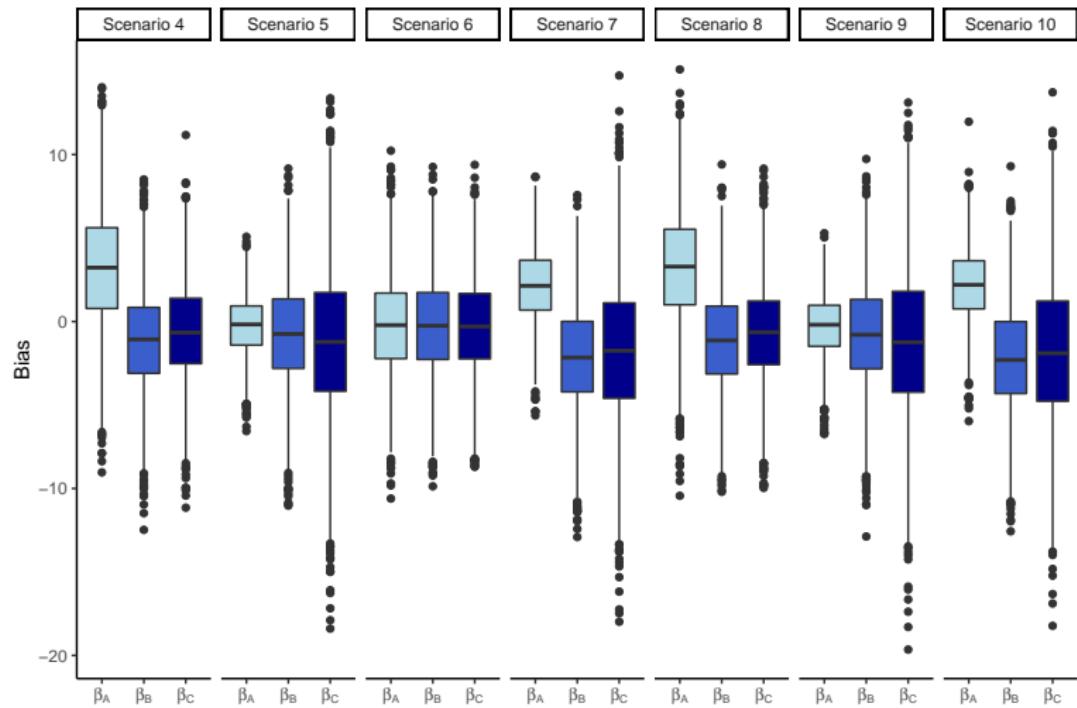
Mapping functions

- Used 3 mapping functions
 - $MF1 = Y_1/100$
 - $MF2 = (Y_1/100)^2$
 - $MF1/2 = (Y_1/100)^{1/2}$
- For scenarios 1, 2, and 3 compared to dichotomized outcomes (DO) using dichotomization of the continuous first stage outcome with 3 different cut offs:
 - DO 30 = 30
 - DO 50 = 50
 - DO 70 = 70

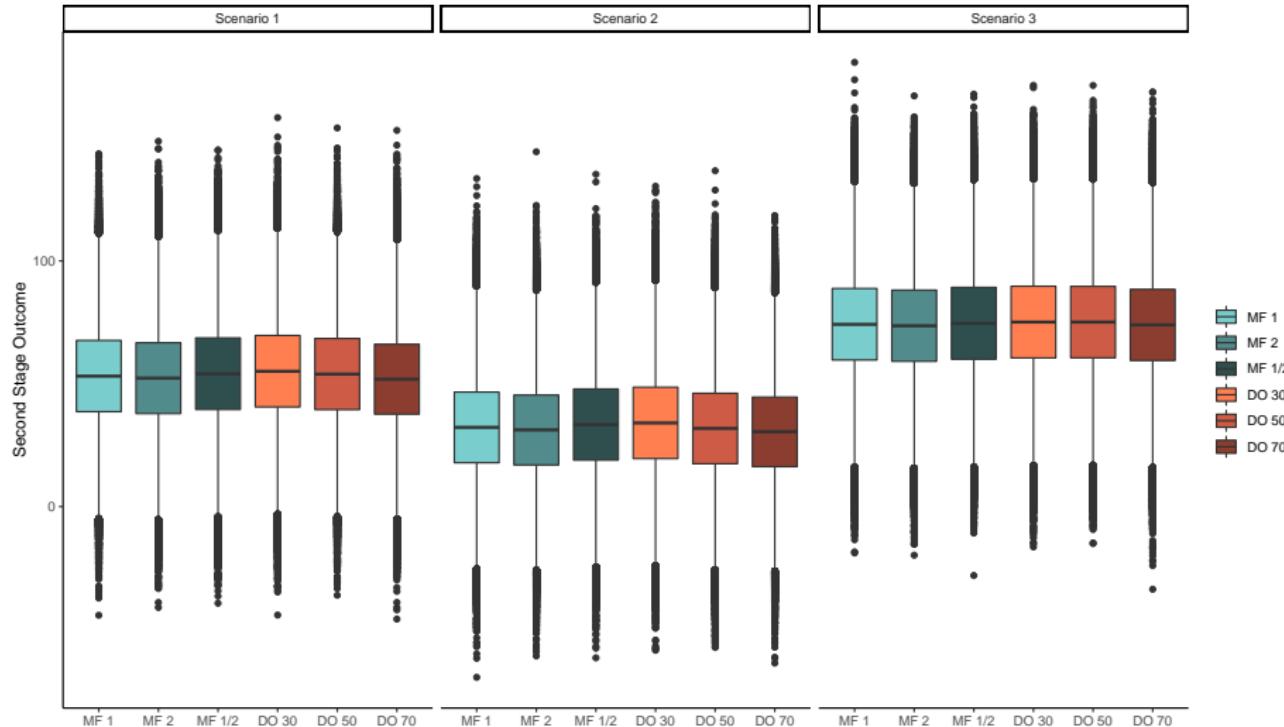
Results for ideal scenarios



Results for model assumption violations



Patient outcomes



Conclusions

- Mapping functions are a reasonable method for conducting a snSMART design in the absence of a binary variable.
- Patient outcomes are similar to when using a dichotomous outcome.
- Using a mapping function improves the number of treatment pathways seen in a trial relative to a poorly selected dichotomous outcome.

References

- Tamura, RN, Krischer, JP, Pagnoux, C, Micheletti, R, Grayson, PC, Chen, YF, and Merkel, PA. A Small n Sequential Multiple Assignment Randomized Trial Design For Use in Rare Disease Research. *Contemp Clin Trials* 2016;46:48–51.
- Wei, B, Braun, TM, Tamura, RN, and Kidwell, KM. A Bayesian analysis of small n sequential multiple assignment randomized trials (snSMARTs). *Statistics in Medicine* 2018;1:10.
- Lei, H, Nahum-Shani, I, Lynch, K, Oslin, D, and Murphy, S. A 'Smart' Design for Building Individualized Treatment Sequences. *Ssrn* 2012.
- Almirall, D, Compton, SN, Gunlicks-Stoessel, M, Duan, N, and Murphy, SA. Designing a Pilot Sequential Multiple Assignment Randomized Trial for Developing an Adaptive Treatment Strategy. *Statistics in Medicine* 2012;31:1887–1902.
- Snapinn, SM and Jiang, Q. Responder analyses and the assessment of a clinically relevant treatment effect. *Trials* 2007;8:31.
- Zajonc, T. Bayesian Inference for Dynamic Treatment Regimes: Mobility, Equity, and Efficiency in Student Tracking. *Journal of American Statistical Association* 2012;107:80–92.